1 (a Complete the table which gives the names, symbols, relative masses and relative charges of the three subatomic particles.

name	symbol	relative mass	relative charge
electron			
proton		1	
	n		0

[3]

- (b) Use the information in the table to explain the following.
 - (i) Atoms contain charged particles but they are electrically neutral because they have no overall charge.

[2] (ii) Atoms can form positive ions. [2] (iii) Atoms of the same element can have different masses. [2] (iv) Scientists are certain that there are no undiscovered elements missing from the Periodic Table from hydrogen to lawrencium. [1] [Total: 10]

- 2 Use your copy of the periodic table to help you answer these questions.
 - (a) Predict the formula of each of the following compounds.

	(i)	barium oxide		[1]
	(ii)	boron oxide		[1]
(b)	Give	e the formula of	the following ions.	
	(i)	sulphide		[1]
	(ii)	gallium		[1]
(c)			nowing the arrangement of the valency electrons in one molecule ound nitrogen trichloride.	e of

		e x to represent an electron from a nitrogen atom. e o to represent an electron from a chlorine atom.	[3]
(d)	Pot	assium and vanadium are elements in Period IV.	
	(i)	State two differences in their physical properties.	
			[2]
	(ii)	Give two differences in their chemical properties.	
			[2]

(e) Fluorine and astatine are halogens. Use your knowledge of the other halogens to predict the following:

(i)	The physical state of fluorine at r.t.p.		
	The physical state of astatine at r.t.p.		[2]
(ii)	Two similarities in their chemical properties	3	
			[2]
		[Total	15]

- particle of number of number of neutrons symbol or formula electrons protons ¹⁹₉ F⁻ 10 Α 10 В 1 11 12 С 1 18 22 D 1 18 16 Е 10 14 1
- 3 The table below gives the number of protons, neutrons and electrons in atoms or ions.

(a) Complete the table. The first line is given as an example.

[6]

(b) Which atom in the table is an isotope of the atom which has the composition 11p, 11e and 14n? Give a reason for your choice.

[2]

[Total: 8]

- 4 Strontium and zinc are both metals with a valency of 2. Strontium is more reactive than zinc. Its chemistry is similar to that of calcium.
 - (a) Complete the following table that shows the number of protons, electrons and neutrons in each particle.

			1		
	particle		electrons	neutrons	
	⁸⁸ Sr				
	⁹⁰ Sr				
	⁶⁵ Zn ²⁺				
					[3]
(ii)	Explain why ⁸⁸ S	r and ⁹⁰ Sr are isotop	es.		
					[1]
(iii)	Complete the el	ectron distribution of	an atom of stront	tium.	
	2		18 +	+	[1]
(b) The	e major ore of zin	c is zinc blende, ZnS	S.		
(i)	Describe how zi	nc is extracted from	zinc blende.		
					[2]
(ii)	Give a use of zi	าс.			
					[1]

• •	(c) The major ore of strontium is its carbonate, SrCO ₃ . Strontium is extracted by the electrolysis of its molten chloride.				
(i)	Name the reagent that will react with the carbonate to form the chloride.				
	[1]				
(ii)	The electrolysis of molten strontium chloride produces strontium metal and chlorine. Write ionic equations for the reactions at the electrodes.				
	negative electrode (cathode)				
	positive electrode (anode) [2]				
(iii)	One of the products of the electrolysis of concentrated aqueous strontium chloride is chlorine. Name the other two.				
(d) Bo	th metals react with water.				
(i)	Write a word equation for the reaction of zinc and water and state the reaction conditions.				
	word equation [1]				
	conditions [2]				
(ii)	Write an equation for the reaction of strontium with water and give the reaction condition.				
	equation [2]				
	condition [1]				

5 The table below includes information about some of the elements in Period 2.

element	carbon	nitrogen	fluorine	neon
symbol	С	Ν	F	Ne
structure	macromolecular	simple molecules N_2	simple molecules F ₂	single atoms Ne
boiling point/°C	4200	-196	-188	-246

(a) Why does neon exist as single atoms but fluorine exists as molecules?

(b)	What determines the order of the elements in a period?
	[1]
(c)	When liquid nitrogen boils the following change occurs.
	$N_2(I) \rightarrow N_2(g)$
	The boiling point of nitrogen is very low even though the bond between the atoms in a nitrogen molecule is very strong. Suggest an explanation.

(d) Draw a diagram showing the arrangement of the outer shell (valency) electrons in a molecule of nitrogen.

[2]

- **6** Carbonyl chloride, $COCl_2$, is widely used in industry to make polymers, dyes and pharmaceuticals.
 - (a) Carbonyl chloride was first made in 1812 by exposing a mixture of carbon monoxide and chlorine to bright sunlight. This is a photochemical reaction.

 $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

Explain the phrase photochemical reaction. (i) (ii) Give another example of a photochemical reaction and explain why it is important either to the environment or in industry. (b) Carbonyl chloride is now made by the reversible reaction given below. $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$ The forward reaction is exothermic. The reaction is catalysed by carbon within a temperature range of 50 to 150 °C. Predict the effect on the yield of carbonyl chloride of increasing the pressure. (i) Explain your answer. If the temperature is allowed to increase to above 200 °C, very little carbonyl chloride (ii) is formed. Explain why. (iii) Explain why a catalyst is used.

(c) The structural formula of carbonyl chloride is given below.

Draw a diagram showing the arrangement of the outer (valency) electrons in one molecule of this covalent compound.

Use o to represent an electron from a carbon atom. Use x to represent an electron from a chlorine atom. Use ● to represent an electron from an oxygen atom.

[3]

[Total: 13]